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Abstract

In this paper a new modeling methodology to characterize failure processes in Time-Sharing

systems due to hardware transients and software errors is summarized. The basic assumption made

is that the instantaneous failure rate of a system resource can be approximated by a deterministic

function of time plus a zero-mean stationary Gaussian process, both depending on the usage of the

resource considered. The probability density function of the time to failure obtained under this

assumption has a decreasing hazard function, partially explaining why other decreasing hazard

function densities such as the Weibull fit experimental data so well. Furthermore, by considering the

Kernel of the Operating System as a system resource, this methodology sets the basis for

independent methods of evaluating the contribution of software to system unreliability, and gives

some non obvious hints about how systerf reliability could be improved. A real system has been

characterized according to this methodology, and an extremely good fit between predicted and

observed behavior has been found. Also, the predicted system behavior according to this methology

is compared with the predictions of other models such as the exponential, Weibull, and periodic

failure rate.
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INTRODUCTION

1. Introduction

There are several trends in Distributed Data Processing (DDP) Systems that, when applied to the

Ballistic Missile Defense (BMD) Task make reliability and fault tolerant requirements not only desirble

but also nexessary. These trends include:

* Systems are becoming more complex. Thus, even though component reliability is
improving, the total system reliability may be unacceptably low.

" BMD systems must work. Since national survival may depend on the proper functioning of
a BMD system whose capabilities are unused except at the moment of crisis, the BMD
system must be designed to detect and tolerate failures while in the dormat or monitoring
state.

" Repair. System maintenance is often the dominant cost in the system life cycle. This trend
is even more amplified by the ever shrinking cost of hardware. A related problem is the
disparity between increasing system complexity and decreasing repairman skills. Fault
tolerance and Built in Tets (BIT), an application of the fault detection phase of fault
tolerance, can help reduce repair costs and repair skill levels.

" Transients. Data from several uniprocessor [McConnel 79] and multiprocessor [Siewiorek
78] systems indicates that transient failures are 20 to 60 times more likely than hard
failures. Further, transients exhibit a strong clustering phenomenum. That is, once a
transient has occured, there is a high probability that another transient will occur in a very
short period of time. This clustering might overwhelm fault tolerant techniques designed
for hard failure survival (i.e., a second transient might occur before that the system can
recover from what it expects is a first hard failure). Transients will become more of a
problem with shrinking device dimensions where small local electrical fields can cause
devices to change state. Cases where cosmic rays and background radiation in
packaging material caused transients have already been documented. Transients
occurrences also seem related to system load, a particularely disastrous feature for a
BMD system which must respond to threats with peak processing power.

Therefore, fault-tolerance cost and benefit measures are needed. To evaluate the impact of

unreliability on the performance of computing systems, a knowledge of the mechanisms leading to

unreliable system behavior is required. From a hardware viewpoint, transients are the dominant

cause of system unreliability. However, unreliable software manifestations are almost

indistinguishable from hardware transients.

A methodology capable of modeling and characterizing the impact of hardware transients and

software errors on the performance of DOP systems must be developed. Unfortunately, not that many

DDP systems are available for general use and/or experimentation. And of the DDP systems available,
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none has the necessary instrumentation tools required to validate a possible theoretical model.
Furthermore, modeling methods for hardware transients and software errors is in a very primitive

state. Hence, it is not possible to attack the transient/software error problem for DP systems.
Instead, the problem has to be satisfactorily solved for simpler, more accessible systems such as
uniprocessor time-sharing systems.

This report develops a methodology and a model for hardware transients and software errors on
time-sharing systems. Tools have been developed to gather data from several available systems.
Thus, all theoretical results are compared with the behavior of real systems. Some of the results can
be extended to DOP systems. In any event, the results presented in this report are a necessary step
towards the characterization of the effect of transients and software errors on DDP systems.

1.1 Definitions

The following concepts need to be precisely defined:

Hardware Fault Erroneous state of hardware due either to failures of components or to physical
interference from the environment.

Hardware Error Manifestation of a hardware fault within a program or data structure.

Permanent Hardware Fault
Hardware fault which is continuous and stable, reflecting an irreversible physical
change in the hardware.

Transient Hardware Fault
Hardware fault due to temporary environmental conditions.

Software Fault Imperfection in the design or implementation of a software module such that upon
some timing or value conditions in its inpu t data stream it fails to accomplish its
designed task.

Software Error Manifestation of a software fault within a program or data structure.

System Failure Manifestation of software or hardware errors that force an entire computing

system to suspend its operation.

Since no repair takes place after system failures due to software faults or transient hardware faults,
the time of system failure is essentially equal to the system restart time. Since this report is concerned

solely in modelling hardware transient faults and software faults, the words "system failure" and

"system restart" will be used interchangeably to describe the same event in time.

t _________________________________________________________-A
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1.2 The problem of Characterizing System Reliability

Fault-tolerance has traditionally been characterized by relatively simple functions based on strict

assumptions. The Reliability funct R(t) is defined as the probability of uninterrupted operation up

to time t given that all hardware was correctly operating at time t = 0. R(t) may be used to characterize

either permanent or transient faults. The usual assumption is made that the failure rate is constant
AXt

and, for nonredundant systems the reliability function becomes e , where A is is the sum of the

failure rates of all the components in the system. A very common quantitative measure is the Mean

Time To Failure (MTTF)

MTTF f A (t) dt (1.1)
0

The popularity of the MTTF stems mainly from the fact that, for nonredundant systems, it is easily

estimated by dividing the time a system is operational by the number of failures reported. Other

reliability indices used to compare two systems A and B, are the Reliability Improvement factor (RIF)

[Anderson 671

RIF = (1.2)
1 .RB(t)

and the Mission Time Improvement Factor (MTIF) [Bouricious 69]

MTIF = !A when RA(TA) = RB(T B) = R n  (1.3)
= B 

4i

which are useful only when the system under study must be available for a predetermined period of

time T called "mission time".

The concept of coverage [Bouriclous 69) is defined as the conditional probability of successful

recovery, given that a fault has occurred. Although mathematically attractive, coverage has proven to

be very difficult to estimate for real systems. Finally, if the Mean Time To Repair (MTTR) is also

known, an estimate of the system usefulness given by the Availability

AL_
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A= M"IF (1.4)
MTTF + MTR

These and other measures traditionally used to compare systems do not take into account the

performance of the system whose reliability is being measured. Consider Table 1-1 which lists the

results obtained from seven different experiments whose goal was explicitly to gain experience on

systems reliability. Data for the first system [Yourdon 72], was obtained from a summary of failure

statistics on a Borroughs 5500 over a 15 month period starting in April of 1969. Limited information

about the cause of each failure is available. For instance, one of the categories includes system

failures due to unexpected I/O intercepts. These failures are recorded whenever the software

responds to an interrupt signifying that some I/O action has taken place, but discovers that it has no

record of having initiated such action. It is thus an indication of some form of hardware or software

error but the particular cause for the failure (hardware or software) remains unknown. The data for

the second system was reported in [Lynch 75] and comes from the first thirteen months of operation

of an operating system called Chi/OS for the Univac 1108 developed by the Chi Corporation between

1970 and 1973. No explanation is given about how such an accurate decomposition of failures due to

hardware and software could be obtained. [Reynolds 75] reports data obtained from a dual IBM

370/165 at Hughes Aircraft Company over a period of three years installed to handle a mixed batch

and time sharing load. The forth system is at the Stanford Linear Accelerator Center (SLAC) where

the main workload is processed as multi-stream background batch. The system consists of a

foreground host (IBM 370/168) and two background batch servers (IBM 370/168 and IBM 360/91).

The architecture is designed to be highly available and reconfigurable. The CMU-10A is an ECL PDP-

10 used in the Computer Science Department at Carnegie-Mellon University. The data for the CRAY-

1 was reported in [Keller 76], and the data for the three generic UNIVAC systems was reported in

[Siewiorek 80].

Table 1-1 gives, when available, a Mean Time to reStart (MTTS) value in hours (that is, the Mean

Time to System Failure), a Mean Number of Instructions to Restart (MNIR) which is an estimate of the

mean number of instructions executed from system start up until system failure, and the percentages

of system failures that were caused by hardware faults, software faults, and whose cause could not be

resolved. The information about execution rates. needed to compute the MNIR value was obtained

from (Phister 79].

Obviously, the figures shown in Table 1.1. do not carry much information. A MTTS figure alone
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System MTTS (hours) MNIR % HW % SW % Unknown

B 5500 14.7 2.6 1010 39.3 8.1 52.6

Chi/05 .17 6.7 1010 45 55
(Univac 1108)

dual 8.86 2.8 1011 65 32 3
370/165

SLAC 20.2 2.3 1011 73.3 21.6 5.1

CMU-10A 10 4.3 1010

CRAY-1 4 1.9 1012 -

UNIVAC 51 42 7
(Large)

UNIVAC 57 41 2
(Medium)

UNIVAC 88 9 3
(Small)

Table 1-1: Reliability experience of several comercial systems.
MTTS is the Mean Time to reStart. MNIR is the Mean Number of
Instructions to Restart.

does not tell the impact of unreliabilityon system use. Compare fcr example the CRAY.1, (Russell 78),

with the CMUA, [Bell 781. Although the CRAY-1 crashes twice as often as the CMUA, it can operate

continously at rates above 138 Million Instructions Per Second (MIPS), while the CMUA operates at

1.2 MIPS. Hence the CMUA executes -1010 instructions between crashes while the CRAY-1 executes

_1012 instructions between crashes. Inconsistancies like this one suggest that reliability modelling

and measuring should be closely related with the characterization of the performance of the system

under study. Integrated performance.reliability models have already started to appear in the

literature. In [Meyer 791, a performance measure called "perforrmability" gives the probability that a

system performs at different levels of "accomplishment". In [Gay 791, systems are modelled with

Markov processes in order to estimate the probability of being in one of several capacity states. This

is a similar approach to the one previoulsy taken in [Beaudry 781, where the concept of "computation

I __ ____ ___ ____ ____ ____ ____ __-,
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reliability" was introduced as a measure which takes into account the computation capacity of a

system in each possible operational state. Finally, a Performance/Availability model for gracefully

degrading systems with critically shared resources is given in [Chou 80).

However, most of the above models have been developed mainly for hard failures, that is, st'hle

failures that reflect an irreversible physical change in the hardware. Unfortunately, as it has been

repeatedly reported ( [Fuller 78], [McConnel 79], [Morganti 78], [Siewiorek 78], [Ohm 791), transient

failures occur at least an order of magnitude more often than hard failures. A cost effective analysis

should then consider transients as the main reason for system unreliability.

Simultaneouisy with the developments described above, qualitative relationships between

workload and unreliability have also been noted. The results published in [Beaudry 79] suggest a

strong dependency between workload and reliability of digital computing systems. And in the paper

by [Butner 80], this dependency is stated explicitly claiming that a periodic, workload-dependent

failure rate is more appropriate to characterize the reliability of time-sharing systems than the

classical constant failure rate model traditionally used. As reported in [Castillo 80], if such a

dependency is taken into account it is possible to characterize the performance of digital computing

systems considering reliability as an inherent attribute.

1.3 Software Reliability

The problem of software reliability assessment is part of the more general area of software quality

assessment [Mohanly 73]. Effective machanisms for measuring software quality are required due to

the high cost of software development and maintenance. By 1985 forecasts indicate that over 90% of

the total computing dollars spent annually will be for software [Horowitz 75]. The development of

techniques for measuring software reliability has been motivated mainly by project managers that

need both ways of estimating the man-power needed to develop a software system with a given level

of performance and techniques to detect when this level of performance has been reached. However,

most software reliability models presented up to date are still far from satisfying these two needs in a

general context.

Software reliability models can be roughly grouped in four categories. The first category would

include models formulated in the time domain. These models attempt to relate software reliability

(characterized, for instance, by a MTTF figure under typical workload conditions) to the number of

bugs present in the software at a given time during its development. Typical of this approach are the

, ,
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models presented in [Shooman 731, [Musa 751, and [Jelinsky 73]. Bug removal should increase MTTF

and correlation of bug removal history with the time evolution of the MTTF value may allow the

prediction of when a given MTTF value will be reached. An example of the application of time domain

models to the development of a real-time system is given in [Miyamoto 751. The main disadvantages

of time domain models are that bug correction can generate more bugs, and that software

unreliability can be due not only to implementation errors (bugs) but also to design (specification)

errors.

Another approach to software reliability modeling is based on studying the data domain. The first

model of this kind is described in [Nelson 73]. In principle, if sets of all input data values upon which a

computer program can operate are identified, an estimated of the reliability of the program can be

obtained by running the program for a subset of input data values. A more detailed description of data

domain techniques is given in [Thayer 78]. In the paper by [Schick 781 the time domain arnd data

domain models are compared. However, different applications will tend to use different subsets of all

possible input data values, "seeing" different reliability values for the same software system. This fact

is formally take into account in [Cheung 80], where software reliability is estimated from a Markov

model whose transition probabilities depend on a user profile. Techniques for evaluating the

transition probabilities for a given profile are given in [Cheung 751.

The third category includes models in which software reliability (and software quality in general) is

postulated to obey certain laws [Ferdinand 74], (Fitzsimmons 78]. Although~ such models have

generated high amounts of interest, their general validity has never been proven and, at most, they

only give a figure for the number of bugs present in a program.

Finally, there have been some attempts to characterize total system reliability (hardware and

software) in [Costes 78], modelling of fault-tolerant software (through module duplication) in [Hecht

76], and warnings about how not to measure software reliability [Littlewood 79].

What all the above models have in common is that none of them characterizes system behavior

accurately enough as to give to the user a figure of guaranteed level of performance under general

workload conditions. They concentrate in estimating number of bugs present in a program but do not

give any accurate method to characterize and measure operational system unreliability due to

software. There is a wide gap between the varaiables that can be easily measured in a running

system and the number of bugs in its operating system. However, a cost effective analysis should

precisely allow to evaluate the impact of software unreliability from variables easily accessible in an

operational system, without knowing the details of how the operating system has been written.
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1.4 Measuring Reliability under typical and atypical conditions

The assumption here is that reliability is a performance attritbute in the sense that a lack of

reliability increases the expected value of the system response time. If such a relationship can be

derived in a general context, policies and/or design parameters could be used to optimize the

ultimate system performance. In this report, the approach taken is that failurei time variations

shul closely follow workload time variations. Intuitively, the dependency between workload and lack

of reliability can be explained quite easily. Assume that we have a constant failure rate for the primary

memory of a digital computing system operating in a stable environment under a time sharing policy.

That the transient failure rate in a memory is constant is a reasonable assumption. There is

justification for thinking that certain complex devices might follow an exponential failure law ( [Barlow

65], pp 18.22). The physical characteristics of the memory IC's do not change with time (at least

during the effective life cycle of modern digital computing systems). We have to look then for the

origin of these transients either in external sources, such as radiation, the presence of noise (possibly

impulsive) in the power supply or in the limitations of the manufacturing process. In fact, it has been

reported in [Geilhofe 79] that MOS memory devices exhibit non recurring bit failures caused by Alpha

particles emitted from small amounts of radioactive elements present in IC packaging material. The

failure rate for this kind of failures is of course constant. Assume now that a transient memory failure

has higher probability of leading to a system crash when the central processor is executing in Kernel

mode than when it is executing in user mode. A memory failure when the CPU is executing in user

mode may affect a user process but will not crash the system. The system failure rate due to transient

memory failures will then depend on the ratio of the number of memory references while in Kernel

mode to the total number of memory references per unit time. Since it is a well known fact that

operating system overhead increases with workload, the previous ratio will also be a nondecreasing

function of the system workload, increasing in turn the observed system failure rate. The result is that

the observed system failure rate due to transient memory failures should be equal to the sum of a

component following the operating system ovehead variations in time (or indirectly, workload

variations in time), plus a constant, workload independent component (even if the system is idle, there

may still be memory errors that corrupt, for instance, the clock interrupt subroutine).

*Even if the fact that a computing system is not always equally sensitive to the presence of hardware

errors is not considered, there are still arguments to support the idea that the apparent system failure

rate should depend on the workload. The fact is that in most computing systems, a component failure

will be noticed only if the component is "exercised". A time sharing system with no load, spending

most of its time in a wait state and only a fraction of the time'executing the clock interrupt routine may
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sustain several failures and still not report any errors if the minimal hardware configuration required

to execute these basic functions is not affected. It is not maintained here that failures will be caused

by increased utilization (although in some cases this situation is certainly possible) but that they will

be deece by an increase in system utilization. This effect has also been referred to as "error

latency" (Shedletsky 73].

Analogous arguments lead to the expectation that the rate of system failures due to software

unreliability will depend on how much the software is exercised. System software failures are due to:

a) the (static) input data to a progam module presents some peculiarities that the program is not able

of handling or, b) the software is not capable of handling some time dependent (dynamic) sequence

in the input data stream. In the case of a time sharing system, the only software capable of provoking

a system failure is the Kernel of the Operating System. This software usually executes in a privileged

processor state and a software error that corrupts some critical information in the Kernel data

structures may lead to a system failure. However, since nobody has any a priori knowledge of what

these errors are, it is less likely that the system finds one of these combinations in its input stream

under low load (that is, small amounts of input data to process per unit time) than in a high load

situation. Again, the observed system failure rate has to depend on the system load. Furthermore,

upon correct system operation, a user program is restricted to access any resource for which it has

not been given explicit permission by the kernel. Hence, it is not necessary to worry about the effects

of user programs. Unfortunately, a mathematical characterization of these phenomena is not

available. Most of the so called software reliability models attempt, at most, to give a figure for the

Mean Time To Failure of a software system under some "typical" workload conditions. As will be seen

in the following sections, the characterization of a "typical" workload is in itself an important problem.

One of the more important byproducts of considering a time varying failure rate in which failures

can be due either to hardware transients or software design errors is that the relative contribution of

software to system unreliability can be estimated directly from the history of system failures. From a

software point of view, the model presented here is more in the line of the ideas exposed in

[Littlewood 791 in the sense that the concepts of bug identification and elimination should be

separated from reliability measurement. No one cares about how many bugs remain in a software

system if the sytem operates at an acceptable level of performance. The modeling methodology

presented in this report does not give any solution to the problem of improving software reliability

(although it gives some non trivial hints about how that could be done) but gives a method to

characterize the distribution of the time to failure due to software under general workload conditions.

The formal characterization of performance of a digital computing system may be very elusive. As

.. ... ..... .L
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described in [Ferrari 751, there are no known system-independent and workload- independent
performance indices (two necessary properties to consider a measure a universal measure). But the
average user is only concerned in the elapsed time since a computation is requested and the correct
result is produced. This time will depend on the load of the system, the operating system overhead, on

the probability that the system fails and his particular task has to be restarted, and of course, on the
underlying hardware configuration. It is then an important problem to establish formal quantitative

relationships between workload, performance, and reliability.

In summary, this report gives a solution to the mathematical characterization of the relationships

between workload, performance, and reliability due to transient failures and software design errors.
The mathematical analysis developed here can be applied not only to computing systems, but to any
complex systems in which reliability is an important characteristic and for which some knowledge
about workload variations is available. Since a large class of these systems operate under a quasi-
periodic demand (such as public transportation systems, power distribution networks, time sharing
and some real-time computing systems, etc.), the mathematical characterization has been developed
first for systems in which the workload can be characterized by a cyclostationary stochastic process

(a time varying stochastic processes with periodic mean and variance).

In Section 2 the formal assumptions made in the characterization of the failure process of a time-
shared computer are stated in detail. Also, general expressions are derived for the Probability
Distribution Function, Reliability Function, and Hazard Function of the times to hardware failure,

software failure, and system failure when the system overhead is described by a cyclostationary
process that can be approximated by a periodic function plus a "corrected" zero mean Gaussian

proc-ss.

The results presented in Section 2 are elaborated in Section 3 where the failure process of a real

system is studied in detail, and exact expressions are given that characterize the software, hardware,

and system reliability for that partcular system. In Section 4 these results are compared with the
available data regarding the reliability of the system under consideration and with the characterization
that would result from more traditional models such as constant failure rate (time to failure expontially
distributed), Weibull, and periodic failure rate. Finally, in Section 5, a list of items to be further
investigated is proposed, along with some preliminary conclusions. Two mathematical derivations

particularly tedious have been left to appendices so not to distract the reader with cumbersome
details that are not relevant to the ideas presented in this report.
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2. Mathematical characterization

This Section gives the mathematical basis of a model able of predicting and calibrating the

unreliability of digital computers due to hardware transients and software errors. First, the necessary

definitions are given in Section 2-1. The assumptions that the systems to be modelled are assumed to

satisfy are stated in detail in Section 2-2. In Section 2-3 a mathematical skeleton is built based on

these assumptions. The result is a general expression for the Probability Distribution Function (PDF)

of the time to system failure. Finally, in Section 2.3. the general procedure for evaluating the maximum

likelihood estimates of the model parameters is outlined.

2.1 Definitions

A stochastic process fx(t,w); tET, wEfl is a family of random variables all defined in the same

probability space 2 and indexed by a real parameter t that takes values in a parameter set T called the

index set of the process. The indexing parameter t will represent time in all the processes presented in

this report and T will always be equal to the real line R, that is, only continuous time processes will be

considered. For each fixed tEP, x(t,w) as a function of w will be a real valued random variable. For

each wEQ, x(t,w) as a function of t will be a real valued function of time called a realization of the

process. The set of all these time functions is called the ensemble of the process.

Definition 1: A counting process {N(t,w); t>t01 is a stochastic process having the set
I + = {0, 1,2,.., 00) of nonnegative integers as its state space.

For each wEQ, N(t,w) is a piecewise-constant function of t with jumps at tl(w), t2(w) .... tn(w), the

values of t1 ,.... tn depending on the realization of the process. Counting processes are always

associated with point processes, the value of N(t,w) for ti<t i + , being the total number of "points"

generated up to ti +1 All counting processes presented in this report will be associated to failure
processes of a given system, the value of N(t,w) for t. <tt i + , being the number of system failures

detected up to t,+ I' A typical realization or sample function of a counting process is shown in fugure

2-1.

Definition 2: A Poisson process is a counting process {N(t) ; tto) with the following
three properties:

1. Pr[N(to)-01 , 1

2. For to_<s<t, the increment N(s,t) = N(t).N(s) is Poisson distributed with parameter

A(t)- A(s), where A(t) is a nonnegative, nondecreasing function of t.

3. {N(t);t2:to) has independent increments.
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Figu re 2-1: A possible sample function of a counting process.

Property 3 is the distinguishing property. It means that for a Poisson counting process, the number

of points in nonoverlapping intervals are statistically independent random variables, no matter how
large or small the intervals are and no matter how distant or close they may be. The function A(t) in
property 2 is termed the parameter function of the process. If A(t) is an absolutely continuous

function of t, it can be expressed as

A(t) = JX(,r) dr (2.1)

where X(,r) is a nonnegative function of t for t>to. The function X(r) is termed the intensity function of
the process N(t). At any time t2t o, the intensity function X(,r) is the instantaneous average rate at
which points occur. If N(t) is a failure process X(t) is the failure rate of the process.

Definition 3: A Poisson process is said to be homogeneous when the intensity function
X(t) is a constant independent of time.

Definition 4: Whenever the intensity function X(t) is not a constant but a deterministic
function of time, the corresponding Poisson process is said to be inhomogeneous.

Definition 5: Let x(t) be a stochastic process that is an "outside" process influencing
the evolution of a counting process {N(t);t>to). N(t) is a doubly stochastic Poisson process
with intensity process {X(t,x(t));t_>to} if for almost every realization of the process x(t), N(t)
is a Poisson process with intensity process function A(t,x(t)).

The process x(t) carries the information about how the intensity process varies, and for this reason

will be also called the information process.
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Definition 6: A stationary process (in the strict sense) is a stochastic process
{x(t),tET) with the property that for any positive integer k and any points t ...... tk and h in
T, the joint distribution

fx(t1) ....... x(t)
is the same distribution of

{x(t1 + h) ....... x(tk + k))

Intuitively, a process is stationary if it has the same joint statistics regardless of where the time

origin is set. HIiade, if x(t) is a stationary Gaussian process, the joint distribution function of
{x(t1 + h) ....... x(tk + h)} is a multivariate Gaussian distribution whose covarance matrix is independent
of h.

Definition 7: The Autocorrelation function Rx(tlt 2) of a process x(t) is defined as

Rxx(tl,t 2) = E{x(tl)x(tt2)}

= J Px(tl),X((al'a2) da I da 2

where E{..) stands for expected value and px(t)A( (alva2) is the joint probability density
function of x(t1) and x(t2).

If x(t) is stationary and real, Rxx(t1 ,t2) depends only on the time difference -r = It1-t21 and
RXX(l.) = E{x(t + r)x(t)}

Definition 8: A stochastic process x(t,w) is ergodic in the most general sense if all its
statistics can be determined from a single realization x(t,wo) of the process.

Loosely speaking, a process is ergodic if time averages (the only ones that can be obtained from a
single realization of the process) equal ensemble averages (i.e. expected values). Obviously,
ergodicity can be defined with respect to certain parameters of the process. Only ergodicity with
respect to the autocorrelation function will be needed in this report, which is defined as follows:

Definition 9: A stochastic function is ergodic with respect to the autocorrelation
function if

Sm x(t + r)x(t) dtRXX(-) - T'0 Tf

If ergodicity of the autocorrelation function is satisfied, the autocorrelation function can be

estimated by computing the above integral for a finite record of a single realization of the process x(t).
Definition 10: A real valued, continuous time stochastic process is defined to be a

cyclostationary process with period T if and only if
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1. E(x(t)) = E{x(t + T))

2. E{x(t)x(s)} a E{x(t + T)x(s + T)) V s,t

that is, it is a stochastic process with periodic mean and autocorrelation functions.

Definition 11: A doubly stochastic Poisson process will be said to be a cyclostationary
Poisson process if its information process is cyclostationary.

In summary, and as a short introduction, this report summarizes the results obtained by assuming

the failure processes of Time-Sharing computing systems to be characterized by cyclostationary

Poisson processes.

2.2 Basic assumptions made in the characterization of failure
processes

First, the behavior of failures in Time-Sharing computing systems will be characterized. Since the

occurrence of failures is random, a necessary requirement to understand the process of how a lack of

reliability affects the performance of a system is to find an expression for the probability density

function of the time to failure.

2.2.1 Characterization of the failure process

. The approach taken has been to assume that the different subsystems failure processes can be

accurately modeled by cyclostationary Poisson processes. Although it is common in reliability theory

to assume that failure processes are properly modeled by Poisson processes, one may well wonder

why this assumption leads to good results. There are at least three reasons for characterizing failure

processes with Poisson processes.

First, the conditions for a Poisson process are very likely to be valid for many physical

environments. Qualitatively, these conditions can be summarized as follows:

*Two failures cannot occur simultaneously.

*At any time, there exists an instantaneous failure rate at which failures occur per unit time
and such that the value of this instantaneous failure rate is independent of the past
history of the system.

*the number of failures at start time is zero.

(see [Sneyder 75] for a formal proof that the above are sufficient conditions for a process to be

Poisson). If this "instantaneous" failure rate is a constant, the above three conditions define a

homogeneous Poisson process, for which the interarrival times are independent and exponentially

distributed random variables. If the failure rate is a deterministic function of time, a nonhomogenous
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Figure 2-2: Average number of blocks accessed in the file
system as a function of time of day.
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Figure 2-3: Disks failures as a function of time of day.
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Poisson process is defined. Finally, if the failure rate is another stochastic process, the above three

definitions define a doubly stochastic Poisson process.

The second reason for using a Poisson process is that whenever we have a point process that is the

result of pooling the points of many independent point processes ( whatever their characterization

may be), and the component processes are sufficiently sparse, the pooled process converge to a

Poisson process [Cinlar 72]. This is certainly the case of modem digital computing systems. The

complexity of a minicomputer like the PDP-1 1/40 [Bell 78b] in a minimal configuration of 64 Kbytes of

memory, clock, and a terminal interface is on the order of 103 IC packages. For an supercomputer like

the CRAY-1 [Russell 78], the complexit- is on the order of 105 IC packages. The average Mean Time

To Failure (MTTF) per component is on the order of 106 hours (- 103 years) for hard failures (Hodges

77]. Hence, the system failmrr. late due to transients is the superposition of -103 failure processes,

the probability of observing a filure of any of the component processes in a meaningful time interval

is very small (of the order -E o° * nr a month interval). The fact that the superposition of sparse point

processes converges to a Poisson process guarantees that, independently of the characterization of

each of the component proeesses, the system failure process will be very close to a (non necessarely

homogeneous) Poisson process.

Finally and most importantly, even if system characterization by means of Poisson processes is only

approximate, these processes are very well understood and fairly complex mathematical tools exist.

0.9

us .8
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; ! i'
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Figure 2-4: Number of blocks accessed per unit time in a file
system during five consecutive weekdays (millions of blocks
accessed per 5 minutes).
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That a doubly stochastic Poisson process should be used (that is, the failure rate being another

stochastic process) is a fact suggested by the data presented in Figures 2-2 thru 2-6. Figure 2-4

shows the values of the number of blocks read and written to the file system of a time-sharing digital

computing system during five consecutive weekdays. There is a clear (although nondeterministic)

periodicity in this data Note, for instance, that there is always a peak after a new day is started. This

peak is due to the backup of disks to magnetic tape, which the operator does daily after midnight. If

we average the data for these five days and plot the profile for the average disks use in one day we

see that there is a common time varying pattern for all days (Figure 2-2). If we now examine the one

day profile of disks failures detected during the same period of time in Figure 2-3 we note a

remarkable similarity between the two plots. Although different, the plots in Figures 2-2 and 2-3

present the main peaks and valleys at approximately the same time of day. It seems that in the long

run, after averaging over a one day period both the failure rate and the system usage variables show

the same temporal behavior. If such a dependency exists instantaneoulsy, that is, if the failure rate at

a given time depends on the system load at that time, it is clear that the failure rate must be

characterized as a stochastic process, since the load variations presented in Figure 2-4 cannot be

considered deterministic.

Figures 2-5 and 2-6 show the average fraction of time in kernel mode for a Time-Sharing system and

the number of crashes detected during 29 days, both plots as a function of time of day. Again, there is

some simlilarity between the two plots. The fraction of time in kernel mode for a Time Sharing system

during five consecutive days, shown in Figure 2-7 suggests a cyclostationary process.

Figures 2-2 thru 2-6 should be enough evidence to justify an experiment based on the assumption

that failure rate is a stochastic process. Let X(t) be the value of the instantaneous failure rate at time

t. For a doubly stochastic Poisson process, the probability density function of the time between

failures conditioned to a realization of the process X(t) is given by [Sneyder 75]

t

p(t I X(T), 0<(7<t) = X(t) e (2.2)

2.2.2 Failure rate characterization

Based on the arguments in Section 1, it will be assumed that the instantaneous value of the failure

rate for a particular resource is a nondecreasing function of the "utilization" of that resource. For

instance, more failures per unit time will be detected in a file system when the number of blocks read

and written to the disks per unit time is near its maximum value than when it is used only occasionally.

The fact that system crashes occur more often in periods of high load has been noted in (Butner 80].

- ~L



MATHEMATICAL CHARACTERIZATION 19

,. 0.6

0.5

0.4

-. °.~~. S~.

--. . ~. .* .. ,- • . - . . ". "..

0.2 • ~ "-'. .,- .. . .:.4-. .. .. -• . ..."' -- ..;. % " ,

0.0
10 11 12 13 14 15

Days

Figure 2-7: Fraction of time in kernel mode, k(t), during five
consecutive weekdays.

The exact nature of the functions relating resource utilization and failure rates may be complex,

different for each resource and difficult to characterize from observed data. Since no previous

experience has been reported of working under these assumptions, a cautious approach will be taken

and, as a first step, only linear relationships will be considered. In general then, the failure rate A(t) of

a particular resource whose use is characterized by a function u(t) will be given by

X(t) = a u(t) + b (2.3)

where u(t) will be a function such as the ones shown in Figures 2-4 or 2-7. For instance, the failure

rate of a file system Adk(t) will be given by

xdk(t) - Sdk b(t) + Cdk (2.4)

where b(t) is equal to the sum of blocks read and written to the file system per unit time as shown In

Figure 2-4. Sdk is a sensitivity coefficient relating- disks usage to failure rate and the offset term Cdk

should take care of any possible drift in the relation between usage and failure rate.
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The system failure rate, that is, the rate at which the system crashes and has to be restarted from

scratch is not so obviously characterized. The protection mechanisms provided by the state of the art

operating systems and computer architectures try to maintain continued system operation regardless

of individual component or subsystem failures. The fact is that in most computers the CPU executes in

one of several processing modes, each of the modes having different privileges respect to the overall

system control. A system crash due to a hardware transient is only possible when it affects the

operation of the system in the most privileged mode, the only one able of halting the entire system or

entering into an infinite loop with no other entity capable of correcting the situation. This most

privileged mode of operation is usually referred to as the kernel, and the system failure rate should be

a nondecreasing function of the fraction of time that the system operates in kernel mode, that is,

Xsh(t) = Shw k(t) + Chw (2.5)

where Xh(t) is the system failure rate due to hardware transients, Shw is a sensitivity coefficient, k(t) is

the instantaneous value of the fraction of time that the system operates in kernel mode and chw is a

residual, workload independent, failure rate (even if the kernel is only slightly exercised there is the

possibility that a transient in the main mamory will corrupt parts of the kernel data structures).

The system failure rate due to software errors will also depend on the fraction of time that the

system operates in kernel mode because the kernel of the operating system is the only software

capable of leading to a system crash. However, when the workload is very low, and the kernel

executes only relatively simple operations it is to be expected that this part of the kernel will be well

debugged such that the system failure rate is zero for low values of k(t). It will then be assumed that

the software failure rate will be zero for values of k(t) below a threshold value ko and increase with k(t)

above ko . Again, the relationship between k(t) and failure rate will be assumed linear such that

s" sw k(t)- sswko If k(t) > k 00 otherwise

(2.6)

where X (t) is the system failure rate due to software errors, ssh is its sensitivity coefficient, and k0 is

the value of k(t) below wich this failure rate is zero. XS (t) can be rewritten as
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SAs = sw[k(t) - R(t)] - ss8 ko (2.7)

where

k(t) if k(t)(k
0R(t) = 0otherwise

(2.8)

The following expression can then be obtained for the system failure rate, that is, the rate at which

the system crashes due either to hardware transients or software errors

XSy(t) = [sh, + ssw]k(t) + chW - ssR(t) - sswko (2.9)

Only these three cases (the failure process of a file system, the system failure process due to

transients, and the system failure process due to software errors) will be studied in this report.

Expressions for the probability density function of the time to failure and reliability function for the

three cases are given in Sections 2-2 thur 2-4.

2.2.3 Workload characterization

Something more can be said about the "utilization" functions. Although being nonstationary

processes, it is obvious that due to the operational policies that regulate the use of Time-Sharing

systems, they will have a periodic behavior. The second hypothesis that we make is that workload,

and hence system usage for time sharing systems can be modeled as a cyclostationary process

[Gardner 75], [Gardner 78]. A cyclostationary process is defined as a second order process with

periodic mean and autocorrelation function. The periodicity of the mean is obvious from Figure 2-4

and in fact it is possible to make the simplifying assumption that the workload causing such overhead

can be described by a periodic (hence deterministic) function of time. This is the approach taken in

[Butner 80], where it is expected that a periodic failure rate Poisson process will lead to a more

accurate failure process characterization than a homomgeneous Poisson process model (time to

failure exponentially distributed). Here, the instantaneous value of the failure rate will be considered a
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random variable with periodic mean, and the failure rate will be a cyclostationary process. The third

hypothesis is that u(t) (the usage function of a particular system resource) can be properly modeled

by adding a deterministic, period function of time m(t) plus a stationary, zero mean, Gaussian process.

That is,

u(t) = m(t) + z(t) (2.10)

such that in general

X(t) = am(t) + az(t) + b (2.11)

where m(t) is a periodic, deterministic function of time and z(t) is a stationary, zero mean, Gaussian

process, independent of m(t). This third hypothesis, although attractive, cannot be correct. If z(t) is a

purely Gaussian process, there is a non-zero probability that X(t)<0 and the above expression cannot

be used as a failure rate of a Poisson process. To avoid this problem let

S min + z(t)M - un I z(t) < Umin - re(t).()= 0 ouherwis

(2.12)

and set

u(t) = m(t) + z(t) - i(t) (2.13)

from where we obtain

X,(t) = a[ m(t) + z(t) - i(t) ] + b (2.14)

= a m(t) + b + a[z(t)-i(t)] (2.15)

In summary, the three hypothesis in which this work is based are:

1. The failure process of a digital computing system can be %_,Zribed by a doubly
stochastic Poisson process.
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2. The failure rate is a linear function of the operating system overhead (so, indirectly,
depends on the system workload)

3. For computing systems with cyclostationary workload, system overhead time variations
can be modeled as a periodic, deterministic function of time plus a stationary, zero mean
Gaussian process, independent of the underlying periodic function and adequately
corrected in order to have a positive failure rate.

Note that assumption one is much less restrictive than the usual assumption of considering the time

between failures being exponentially distributed (i.e., the failure process is usually considered a

homogeneous Poisson process). In later Sections, the insight gained in understanding system

behavior from dropping this oversimplification will be discussed. Also, the implications o considering

(or not considering) assumptions 2 and 3 will be discussed.

2.3 Characterization of a file system failure process

As a first application of the hypothesis described above, the failure process of a file system under

cyclastationary workload will be studied in detail. The hypothesis are that the subsystem failure rate is

given by

X dk(t) = Sdk b(t) + Cdk (2.16)

where

b(t) = mdk(t) + Zdk(t) - zdk(t) (2.17)

The pdf of the time to failure conditioned to a realization of the process X dk(t) is given by

PdkI t Ixdk(-r),to< <t) = \dk(t) ef Xdklr)dr (2.18)

The general pdf is given by

pdk(t) = E tAdk(t) el .(dk()dl" (2.19)
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where the expectation is taken over the ensemble realizations of the process Xdk(t). It is shown in the

Appendix I that, under the assumption that Xdk(t) is given by (2.14), the above expectation is equal to,

Pdk(t) =--dket) dk 2 "['dk'dk c dk" Pdk(sdkbmn } (2.20)

The meanings and values of each of the parameters on which p(t) depends are described in detail in

Appendix I, and only a summary will be given here. Odk(t) is a periodic function of time, depending on

the periodic component of Xdk(t). The first term in the exponent is the variance of the integral of Zdk(t),

and depends on the autocorrelation function of Zdk(t), Rzz(-r). The last term depends on the mean

value of the deterministic part of X dk(t) and the correction factor Pdk(Sdk,bnn) takes care of the

contribution of Z.dk(t). Finally, it should be noted that this expression is only valid when the second

derivative of the autocorrelation function of zdk(t) at the origin is finite.

The following expression can be obtained for the Probability Distribution Function of the time

between errors:

Ir
Pdk(t<1) = p(t) dt (2.21)

0

= Odk(O) e 5dk 2 -
4 dk(,r) e dk 2 [Sdkmdk +cdk Pdk(dk'min) (2.22)

s2 02.(-r dk dk)k~mn) I

= 1- k( dk 2 dlsdk dkdkrnn (2.23)

To compare our model with a real system we still need to estimate the parameters Sdk and Cdk from

observed data and obtain analytical expressions for the autocorrelation function RZZ(r) and the

variance ar2(t) in equation (2.23). The general problem of parameter estimation for doubly stochastic

Poisson processes is described in Section 2-5, and a numerical procedure for estimating Sdk is given

in section.

2.4 The system failure process

The expression for the system failure rate due to hardware transients and software errors has been

given in (2.9), where k(t) is the fraction of time that the system operates in kernel mode. With the

hypothesis that

L
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k(t) = m5y(t) + Zsy(t)- isy(t) (2.24)

(2.9) can be rewritten as

Xsy(t) = [SSW + Shw][msy(t) + Zsy(t ) -sy(t)] + Chw Ssw'sy(t) - SswkO (2.25)

where

S n + z(t) + It if z(t)<ko -m n
o otherwise

An additional assumption has been made here, that krn<k0<mfnn. That is, it is assumed that the value

at which the failure rate due to software failures starts being nonzero (ko) lies somewhere between the

minimum value of the periodic component of k(t) (mtin) and the minimum value of k(t) (kmin. The

reason for this assumption is that only in this case a closed form expression can be found for the pdf

of the time to system failure. Whether this assumption holds or not in a real system is checked later in

the report.

Again, the pdf of the time to system failure is given by

p E(t) - E, (A,(t) e" ,(r) d ) (2.26)

Using the results of Appendix I, the following expression is obtained

(Sw + 2f [(S +Sm + cp (a +s k )p(sw,k )jt
py(t) .(t)e 2 )(2.27)

and the following expression is obtained for the PDF of the time to system failure

L
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+(S + Sh w ) 2Z[(s + Chw Psy(Ssw + Shw k nn) - psy( swkc)|l

Again, to completely characterize the failure process of a real system, the values of sw,, shw Chw, k0

need to be estimated from the history of failures of the system.

2.5 Parameter estimation

The general problem of parameter estimation for doubly stochastic Poisson processes can be

stated as follows. Let {N(t);t>t0 } be a doubly stochastic Poisson counting process with intensity

X(t,z(t),x), where z(t) is an stochastic process and t = (x14x2 ....... xm) is a vector of unknown

parameters. The occurrence density function that a given realization of the process has a failure at

time If if it has been started at time ts is, given by

p(tfXz( ),ts<T<tf) = X(tf,z(tf),x e" ( ( ,' (2.29)

If we observe n failures at times tf.1. .. tfn with associated starting times t I ..... ts n, the probability

density function of observing such set of events is

p(n)(f 1 .... fnfrz(r),ts<,r<tfiVi) = 1"11 1 P(tsi) X(tfz(tf),x e I ( ,r(z(,r)d (2.30)

where P(tsi) is the a priory probability that the system is started at time ts . Taking the expectation with

respect the statistics of z(t) we can obtain,

Hn)tf P(te) tfiz(tf),- e1 X'rz(r),xldr (2.31)

The maximum likelihood estimate "' - (x,,x ......... X') of of k in terms of a particular realization of

the process is by definition the value of Jxthat maximizes the above density function (Melsa 78]. That

is, p(n)(f 1 . tfnltt,,i -1.n) will be maximum for "X - "X'. In the cases presented in this report,

closed form expressions have been obtained for the pdf of the time to failure. They are all of the form
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p(t) = h(tf,x-) e 1(111111 (2.32)

the function to be maximized is then

p(l)(tf 1 . .. fn) "1 I P(tsi) h(tfi) , - ) e'Hltftix- (2.33)

Note that this problem is equivalent to minimazing the function

nn

1() = 'i= H(ftfitsi'1 ) " "= In[h(ff'')J (2.34)

subject to the constraints

h(tfit)>O i = 1 ....... n (2.35)

Since closed form expressions for the components of f at the minimum are not generay available,

this is a typical nonlinear programming problem, subject to nonlinear inequality constraints. Since this

problem will have to be solved every time that the failure process of a resource has to be modeled for

a real system, particular care has been taken in finding an efficient procedure for the location of

minimums of functions of the type (2.34). In Appendix II, this procedure is described, along with

detailed descriptions of all the functions for which it has been used in the evaluation of maximum

likelihood parameters. -

2.6 The implications of a workload dependent model in
software reliability evaluation

A general methodology for characterizing system reliability in terms of resource utilization functions

has been presented in the previous sections. First, the "typical" measuring conditions have been

generalized to a situation in which workload patterns are mapped into resource utilization functions,

modeled by cyclostationary processes. Second, by considering the kernel of the operating system as

a system resource, an integrated hardware/software reliability model has been built. The assumption

is that the system failure rates due to hardware transients and software errors depend on the kernel

utilization process. Third, since the functional dependencies of the failure rates due to hardware
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transients and software errors with respect to kernel utilization are different, it is in principle possible
to evaluate the relative contribution of each failure rate to the unreliability of the total system.

Once the general functional dependency between failure rate and kernel utilization has been
established, all it is needed to completely characterize a real system is to evaluate the maximum
likelihood values of the function parameters. But all it is needed to evaluate the maximum likelihood
values of these parameters is a history of system failures. Hence, the contribution of software to
system unreliability can be evaluated just knowing the times of a set of system failures, without
needing any information about how the kernel has been written, let alone how many bugs remain in it.
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3. Failure process analysis of a real system

In order to verify that the assumptions stated in Section 2 lead to a better modeling of failure

processes than other models, an experiment was designed. The experiment consisted in the

adquisition of data concerning both the failure process and the use of a general purpose time sharing

system. The system choosen was the CMU-A, a PDP-10 used by the Computer Science Department at

Carnegie-Mellon University as the main general purpose computational tool. The system consists of a

KL-10 processor, one megaword of memory, eight disk drives totalling 1600 megabytes of online

storage and two magnetic tape drives. The system runs a slightly modified version of the standard

TOPS-10 operating system (Bell 78a].

The software packages used to instrument the experiment are illustrated in Figure 3-1. Information

about failures is obtained from an online error log file maintained by a system program, which records

the information produced by different error formatting routines. Entries are made to this file for each

hardware error detected in the system, for system reloads, for disks performance statistics, and so on

[Digital 78]. The error log is later processed by SEADS, a FORTRAN package which allows to list the

times of detection of errors associated with a particular resource. In order to obtain accurate

information about the use of the system, a special SAIL program, SYSMON, was written that samples

the values of 30 system parameters twice every five minutes, the two samples in a five minutes interval

being one second apart. In this way, I/0 traffic, system overhead values, etc., can be obtained

averaged on a one second interval or in a five minute interval with a resolution of 5 minutes. The files

generated by SYSMON are later processed by another SAIL package, READSY, which computes the

periodic component and autocorrelation function of the utilization function of a particular system

resource. The information generated by SEADS and READSY is then processed by an APL package

(POWELL) which estimates the maximum likelihood parameters of the pdf of the time to failure of a

particular resource. Finally, in a separate SAIL package, C2TST, the values predicted by the

cyclostationary model and other models described in Section 4 are compared with the information

stored in the error log according to a X2 goodness-of-fit test.

The operational policies regulating the use of this system at CMU make it a good starting point to

check the validity of the ideas exposed in Section 2. Its steady state operation during weekdays can

be understood from Figures 2-4 and 2-7. Recall that this figure plots the sampled values of the fraction

of time considered to be operating system overhead for five consecutive weekdays. The value of the

accumulated overhead time is obtained by executing a Monitor Call and includes the time spent In

clock queue processing, short command processing, swapping and scheduling decisions, and

software context switching [Digital 77]. This value does not include Monitor Calls execution nor I/O

interrupt times. It is not exactly the time that the system is executing in kernel mode, but it is close

enough for our purposes.

I- , - . ,,
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3.1 Probability Distribution Function of the Time to Failure of
a File System

Figure 2-2 shows the results of compiling five days of disk utilization samples into a single 24 hour
period. Along with the estimated average, this figure shows the function mdk(t) obtained from a finite
Fourier series expansion (see Appendix I for details). A Fourier series expansion is a least squares fit

to our data and is a good way of eliminating the "noise" present in the estimated average due to the
finiteness of the sample. The data in Figure 2-2 corresponds in fact to the function mdk(t) in Section

2.3. after sampling its values every five minutes. After substracting from b(t) the value of mdk(t), the
sampled values of the process zdk(t) are available for estimation of its autocorrelation function.
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Figure 3- 2: Estimated and approximated Autocorrelation
functions of the file system utilization process.

Figure 3-2 shows the estimated autocorrelation function for the process zdk(t). From its

appearance, it seems that an autocorrelation function of the form

RZZ(t) - a~e + a2e"0 2 l  (3.1)

would be appropiate to approximate the real autocorrelation function. The noisy appearance of the

estimated autocorrelation function Is again a consequence of the finite sample size available for its
computation. The main problem in the evaluation of the a, and , 1 is that they are, in principle, very
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sensitive to the sampling interval (in this case, 5 minutes). In the Appendix III, the exact procedvi

followed to evaluate them is described in detail.

With the autocorrelation function given in (3.1), the following expression is obtained for the

variance v%2(t):

a 2 (t) 2a, (t-'r) e-P j dr + 2a 2 f (t-T) e"P2 d-r (3.2)
0 0

=21 --a + a 2 1 t- 2a e'P 1t] 2a .ePt](33
~1 ~2

and substituting (3.3) in (2.23) we obtain,

Pdk(Kr) Idk(T) e(adk 'dkl 0 dk2)t - P,1k 1 • ] ,82 [1 • (3.4)

where the following constants have been defined

adk s dkrh dk + Cdk - Pdk(Sdkbmin) (3.5)

d ! 12 (3.6)

IL ".L2 (3.7)
dk2 A2 dk

P2~

The hazard function is given by

hdk(a) a k [1 - eilt] P d e' 2t] 1  . ). dk(r

a,r (3.8)

The statistics of the time to failure for a doubly stochastic Poisson process when the intensity

process is a cyclostationary process are then equivalent to the statistics of a non homogeneous

Poisson process with hazard function given in (3.8). Although impressive, this hazard function

reduces to a constant term plus a periodic component plus an exponentially decreasing term. Note

that neglecting the periodic component, this hazard function Is exponentially decreasing with the

following extreme values
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Figure 3-3: Hazard function of the equivalent non homogeneous
Poisson process characterizing the statistics of the time to failure
of a file system.

hdk(O) ' adk (3.9)

hdk(Oo) = adk - Odkl - fdk2 (3.10)

as shown in Figure 3-3.

3.2 The Probability Distribution Functions of the Time to
System Failure

The periodic component of the kernel utilization process, my(t), has been shown in Figure 2-5.

Figure 3-4 shows the autocorrelation function of the process zsy(t), suggesting again an
approximation of the form given in (3.1). The following expression is then obtained for the PDF of the
time to system failure

o., .0., . +-oil

P(sy(Kr) - 1- 08y('r) " sySY1 2)t ," t' ' ."  [= (3.11)

where

- - - -
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Figure 3-4: Estimated and approximated Autocorrelation
functions of the kernel utilization process.

= (s + S.)I + Chw" P (sw + shw,k.n) p,(sqw,ko) (3.12)a y(aw +2 YByfn

yL- (SSW + s hw )2 (3.13)

OsY2= -2 (sSW + hw)  (3.14)

The hazard function is given by

.sy.~sy~l~' I]..y2Eoe"2t
]  I s ( "

h = a-,-uyi[ 1 -ee I a 5 y(ve) (3.15)

3.3 Simplified expressions for known starting time

All the expressions given in Sections 3.1. and 3.2. have been obtained after computing the

expectation for all possible values of the starting time in a one day period. If the system starting time is

known, different expressions are obtained. The only differences between the PDF of the time to failure

with known starting time and the POF averaged over a one day period is that the function 0(,r)

becomes a constant equal to one and that the a term in the exponential is slightly different. In

particular, for the case of the file system failures,



FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 35

Pdk(t<lts) ' 1 - I,d 1 (2"dk'ak1'dI2)t' 1 1 t](3.16)

where Pdk(t('ltS) is the probability that a failure will be detected before time r + ts given that no failure
had been detected at time ts, and

a Idk Sdk[Mdk(" + tS) - Mdk(tS)] (3.17)

aldk =Cdk - Pdk(Sdk,bmidn) (318)

Mdk f mdk('r) dr (3.19)

0

The hazard function for known starting time is

hdk(rIts) = Sdk mdk(ts + or) + a'9kdk kl I1- e" .] dk2[1- '2] (3.20)

Similar expressions can be derived for the distribution of the time to system failure.

3.4 Distribution functions of the time to system failure due to
software and of the time to system failure due to
hardware transients

Once the values of sW, Shw, Chw, k0 are known, it is straightforward to derive an expression for the
PDF of the time to system failure due to hardware transients. Repeating the derivation described in
Section 2.4. with sw = k0 = 0, the following expression is obtained

Phw~~l" 1 hw~") e(ah'(Twl" hw2t"l [l-.Pe ] hw2 [ l 0e ' 2t]

= " " h1"qw2) (3.21)
Phw(t~r) a - hw(1) e 021*~1 (.1

where
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"hw - Shwsy + Chw - Psy(Shwk n) (3.22)

=hwl = --- (3.23)
a2 2

Ohw2 = Shw (3.24)
02

In the general case, to obtain the PDF of the time to system failure due to software errors, a similar

equation to (3.16) would be obtained, but with the following parameters

a Sswflsy - Psy(Sswlkmin) - Psy(Ssw,k 0 ) (3.25)

0 = *1 2 (3.26)

=2 2  (3.27)Crsw 2  P ;

Note that if the system failure processes due to software errors and hardware transients are

considered to be nonhomogeneous Poisson processes, each with a PDF of the form (3.16), the

superposition of both processes (i.e., the process obtained by adding the hazard functions of the

software failure process and the hardware failure process) is not equal to the total system failure

process, whose PDF is given by (3.11). This is because they are not statistically independent. Indeed,

both failure processes have a common cause, the utilization process of the kernel of the operating

system.

Table 3-1 gives the maximum likelihood values of Sw, Shw, Chw, and ko for the CMU-A, along with the

value of ehsy' Note that since the value of K0 is larger than rsy, expressions (3.22) thru (3.25) may not

be valid. The correction term p(swk) has been computed assuming that K<<<msy, condition that the

maximum likelihood value of K0 does not verify. In fact, if K0>wsyI the probability density function of

the time to failure due to a software error degenerates into an exponential, such that

P5w(t<7) Z 1 - e"p s y(s sw K0)'"  (3.28)

the PDF of the time to system failure due to hardware transients being given in (3.21).

Figure 3-5 shows the relationship between the instantaneous value of the system failure rate and

the software and hardware components. Note how the software failure rate is zero for a wide range of

. . .. . .... .....
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Parameter Value

SS 0.158

Shw 0.088
Chw 0.0079
k0  0.225

M Xy 0.19

Table 3-1: Maximum likelihood values of the coefficients
defining the relationship between kernel utilization and system
failure rate.

values of k(t), but that its slope is larger than the slope of the failure rate due to hardware errors.

Figure 3-5 thus suggests that to assume a linear relationship between the system failure rate due to

software errors and kernel utilization may be an oversimplification. In fact, it seems reasonable to

expect the probability of observing a software error to increase with the length of time that the

software is exercised and with a "stress" factor depending on the apparent complexity of the input

data to be processed at a given time. In this case, perhaps a higher degree polynomial would better

describe the relationship between the software failure rate and software utilization.
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4. Discussion

Although the assumptions made in Section 2 are less restrictve than the usual assumption of

modelling the failure process with a constant failure rate, the validity of the methodology presented

here can be asserted only by comparison with the behavior of a real system and contrasting the

results that would be predicted by traditional models. This is the subject of Section 4.1., where the

results given in Section 3 are compared with the values predicted by assuming either an exponential

distribution, a Weibull distribution, and a periodic distribution for the time to failure. In section 4.2. an

explanation is given for why the apparent failure rate is decreasing, and finally in Sectinn 4.3. some

preliminary conclusions are summarized.

4.1 Comparisons with other models

The more widespread model used to characterize the failure process of digital computers assumes

the failure process to be a homogeneous Poisson process. The PDF of the time to failure is then given

by

Pe(t<-r) = 1 - (4.1)

where X, is the (constant) failure rate. The maximum likelihood estimate of Xe is obtained simpy by

dividing the time that the system has been operational by the number of failures reported. All

functions and parameters related to this model will be noted with subindex "e" and from now on this

model will be referred to as the exponential model. .

However, empirical studies [McConnel 79a], [Wagoner 73] have shown that a Weibull distribution

gives much better goodness of fit to experimental data than a simple exponential. The Weibull PDF is

given by

Pw(t<r) = 1 - (4.2)

The Weibull distribution is characterized by two parameters: Xw I the - -le parameter, and aw , the

shape parameter. For awn 1, the Weibull distribution degenerates to the exponential. For aw>l, the

Weibull distribution has an increasing failure rate. A decreasing failure rate corresponds to aw<l. All

reports published to date claim that a decreasing failure rate Weibull distribution fits experimental
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data much better than a plain exponential model. Numerical procedures have been developed to find

the maximum likelihood estimates of Xw and aw. These procedures are based on the works of

[Thoman 69, Berger 74, Romano 77] and FORTRAN programs implementing them are given in

[McConnel 79b].

A workload dependent model has been presented in [Butner 80]. A linear dependency between

failure rate and workload is also assumed. The workload is characterized by a periodic function of

time. The PDF becomes an exponential "modulated" by a periodic function

-Kp1"- U(r

Pp(K-T) = 1-e K Fp p( )  (4.3)

where FP is defined as the load induced failure rate and U(T) denotes the instantaneous load value.

This model will be referred to as the periodic model, all its parameters having the subindex "p". Using

the notation developed in Section 2, this is equivalent to assume an utilization function u(t)= m(t),

where only the periodic component is taken into account, and where the Gaussian process z(t) has

been neglected. In this case,
t

p(t) = E [X (t) e ()d 4.4

where

X (t) = sp m(t) + cp (4.5)

and

+ C ),r in (,r(I)

P(t<r) = 1 - e (P e (4.6)

Note that (4.3) and (4.6) are equivalent. In Section 11.5. the equations for computing the maximum

lykelihood values of s p and cP from a history of failures are given.

Finally, the model presented in this report will be referred as the cyclostationary model. An

expression for its POF is rewritten here
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Figure 4-1: Two alternatives to characterize system reliability.
The maximum likelihood values of the hazard function
parameters can be evaluated from the resource utilization
functions or directly from a history of failures.
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- c  +6 0C + 0c2)r .- 11 [ 1e',lr]- "21 - " 2 " + In 0l(-r)

P(t<r) = - e l* P2 (4.7)

Table 4.1. summarizes the densities, Reliability and Hazard functions for each of the four models.

Note that the cyclostationary model has both an asymptotically decreasing failure rate and a periodic

component. Qualitatively, the cyclostationary model seems to integrate the approaches of the Weibull

and periodic models. Note also that, for the case of a file system failures, only two parameters need to

be estimated from a history of system failures (Sdk and Cdk), the other parameters Ation (4.7)

being measured from the actual system behavior (the periodic component and the Lutocorrelation

function of the resource utilization process). Since the cyclostationary model suggests a PDF of the

form shown in (4.7), it is conceivable to postulate (4.7) as the real PDF of the failure process and

estimate the values of ac, Vc1, ac2 , #11 #2 directly from a history of failures, therefore avoiding the

measurement of the resource utilization functions. Figure 4-1 describes these two alternatives

available to characterize system reliability. In Section 11.3. the equations used to estimate the values

of these parameters drirectly from a history of system failures are given.

The fifth distribution in Table 4.1. is a simplified version of the distribution obtained with the

cyclostationary model, considering only one exponential in the hazard function, and neglecting the

periodic component 0(.). Section 11.4. gives the equations for estimating the maximum likelihood

parameters of this distribution from a history of system failures.

Next, quantitative comparisons using data of a real system are in order. Table 4-2 show the results

of applying a X2 goodness of fit test between the actual failures observed in the file system described

in section 3.1. and the distributions predicted by the above four models. A X2 value smaller than 2

(i.e., a level of confidence greater than 0.05) indicates a good fit between predicted and observed

behavior and suggests the acceptance of the hypothetical distribution as the real distribution

underlying the failure process.

As can be seen from Table 4-2, only the cyclostationary model (both with direct and indirect

evaluation of its maximum likelihood parameters) show a good fit with experimental data. Neither the

exponential nor the periodic failure rate models seem to be able to describe the failure process with

significant accuracy. The simplified cyclostationary model distribution and the Weibull distibution are

almost in the border line of acceptance. Further insight can be gained by direct comparison of the

hazard functions of the above four models. Figure 4-2 shows the hazard function of the above four

models for the case of file system failures.

=L
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Table 4-3 shows the results of applying a X2 goodness-of-fit test to the four models in the case of

system failures. Note that for the periodic model, the maximum likelihood values of the coefficient are

such that the proportionality term vanishes, and the constant term equals the X value of the

exponential model. Although all models give a level of significance larger that 0.05, the

cyclostationary model is again clearly superior giving levels of significance of 0.9. The hazard

functions of the four models for the case of system failures are given in Figure 4-3.

4.2 The decreasing hazard function paradox

Tha hazard function found in the cyclostationary model presents the following paradox neglecting

the periodic component, expression (3.15) means that no matter at what time we start observing a

system, the statistics of the time to failure are equivalent to the statistics of a non homogeneous

Poisson process with decreasing hazard function. Since the hazard function is roughly the rate at

which failures will be detected, this means that no matter at which time we start observing a system

the apparent rate at which failures are detected will be a decreasing funtion of time. In this section,

the reason for such surprising behavior is investigated and explained.

To understand the decreasing hazard function paradox, start with the simplest possible case.

Assume that the real failure rate is given by a constant plus white noise.

\3 1(t) = m + xl(t) (4.18)

where m is the (constant) mean failure rate and xl(t) is a stationary, zero mean Gaussian process with

autocorrelation function

R ( = - (Tr) (4.19)

and

lr a J 1 / h 0 5 < " _h
8(i) = h Oh 0 r2h

Assume that m >W1 such that the probability of X,5 (t) being negative can be neglected. The

probability density function of the time to failure is then given by
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Exponential

Re(-r) = e (4.8)

he(T) = \e 
(4.9)

Rw(,r) e (410

hw(,r) wla 
(4.11)

Periodic,

RI(VT) =e - e-FPu(') (4.12)

h pl) [ + F _L(tZ. ] (4.13)

e(.c + ac1 + ac 2)T1 1 - e 1 I 2 [1 e'[2-] + In 0(t)

R ) 2 (4.14)

h(c) X 1 XC l1.e',PIr .ac2[1.e'P2 ] a6t (4.15)hc( = C1 0(t) at

Simplified Cclostationarv

R,(1) "Pm (4.16)

hm(,r) am. ymil ** emT 1  
(4.17)

Table 4-1: Reliability and Hazard functions of the five compared

models.



DISCUSSION 45

Model Parameter Degrees of X2 value 2 Level of
Values Freedom Confidence

Exponential xe = 0.67 7 130 14.067 0

Weibull w =0.91 8 17.717 15.507 0.026
a w =0.68

Periodic S =1.25 12 1007.194 21.026 0
cp = 0.28

Cyclostat. sc = 14.00 8 8.69 15.07 0.36
cc = 2.01

Cyclostat. ac = 2.13 6 8.642 12.592 0.19
(Direct) Ic = 1.42

2r. = 4.03
#I =0.59

#2 = 0.21

Simplified a c = 1.69 8 19.434 15.507 0.013
Cyclostat. 01C = 1.38

P1 .1.38

Table 4-2* Results of a X2 goodness-of-fit test with the
Exponential, Weibull, Periodic, and Cyclostationary models for file
system failures. Only the Cyclostationary model gives a level of
confidence greater than 0.05. The Weibull and simplified
cyclostationary models give smaller levels of confidence but close
to 0.05. The hypothesis that the time to failure can be
characterized with Exponential or Periodic models has to be
rejected. The data used was obtained from five weekdays of
system operation during which 877 (transient) failures were
detected. The MTTF value is 7 minutes. The file system is
composed of 8 RP06 disk drives totalling 1600 megabytes of on
line storage.
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1

Model Parameter Degrees of X2 value 2 Level of
Values Freedom Confidence

Exponential Ae = 0.0073 8 7.87 15.507 0.45

Weibull Xw 0.0074 7 7.95 14.067 0.35
aw =0.98

Periodic s = 0.0 - -

Cp =0.0073

Cyclostat. sw = 0.158 5 1.61 11.070 0.9
Shw = 0.0869
Chw = 0.0079
kW= 0.0357

Cyclostat. ac = 0.013 5 1.66 11.070 0.9
(Direct) = 0.0054ile c =-0.0080

r2COOO8

=0.21
P2 = 0.0041

Simplified ac = 0.014 6 0.75 12.592 0.9
Cyclostat. Olc =0.0064

P= 0.21

Table 4-3: Results of a X2 goodness-of-fit test with the
Exponential, Weibull, Periodic, and Cyclostationary models for
system failures (crashes). Although all models give a level of
confidence larger than 0.05, the Cyclostationary model shows a.
better fit to real data. Note that for the Periodic model the
maximum likelihood values of the coefficients is such that the
proportionality coefficient vanishes and the constant term is equal
to the A value of the Exponential model. The data used was
obtained from 29 weekdays of system operation during which 60
failures were detected giving a MTTS (Mean Time To reStart)
value of 11 hours.
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Figure 4-3: Hazard functions predicted by Exponential, Weibull,
Periodic, and Cyclostationary models for system failures.
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p,(t) e-. - 8 2 )(4.20)

where a2(t) is the variance of the integrated process

02(t) = W1  (t-) 8(r) dr (4.21)

= Wit (4.22)

such that

pl(t) = -&( eMte W it) (4.23)

P(t() = 1 -e(ItvW )T (4.24)

h1(r) = m-W 1  (4.25)

This failure process is equivalent to a homogeneous Poisson process with an apparent hazard

function not equal to the mean failure rate, but equal to the difference of the mean failure rate minus

the "power" of the noise, W1 The reason for that is that the failure rate appearing in the exponent of

an exponential, variations above the mean fRilure rate are not equally weighted with variations below

the mean. In fact, the variations below the mean value are more heavily weighted, and hence the

resulting smaller limiting failure rate when the expectation is taken over all possible realizations of the

failure rate process.

Assume now that the real failure rate is equal to a constant plus a zero mean, stationary Gaussian

process

X2(t) = m + x2 (t) (4.26)

but that now the autocorrelation function of the Gaussian process is given by
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Rx~(.) = - l (4.27)
22

In this case,

ar2(t) t [1-e "j 3 ] (4.28)
2P 2/32

Defining

W =(4.29)/3

the following expressions are obtained

w ./Pt

p2(t) = - e'mt eW2t'" e/ t ] ) (4.30)

P2(t<) =1- e (4.31)

h2(T) = m-W2 [1-e~] (4.32)

This failure process is then equivalent to a non homogeneous Poisson process with an
exponentially decreasing hazard function. For T. = 0, the apparent hazard function is equal to the
mean real failure rate, m. For 'r - 00, the apparent hazard function equals the same value that had
been obtained assuming the Gausian process to be white noise. And as 7 increases, the failure rate
approaches this limiting value exponentially.

Finally, note that if W1 = W2, the system with white noise utilization process will be more reliable
than another system having a utilization process with autocorrelation function given by (4.27). In the
case of white noise, the system reaches the minimum value of its hazard function at t = 0, while for an
autocorrelation function of the form (4.27) the minimum value is approached exponentially. Hence a
non obvious way of increasing the reliability of a particular resource would be to build a system such
that the utilization process of that resource approaches white noise as much as possible.
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4.3 Preliminary conclusions

It has been shown how the cyclostationary model is capable of predicting the reliability of a Time-

Sharing system in steady state operation. Workload dependency is stated explicitely in the model, by

means of resource utilization functions. System reliability is evaluated in terms of utilization of system

singularities (i.e., the Kernel of the operating system). And, in general, resource reliability is evaluated

in function of the utilization of each resource.

Sofware and hardware reliability can be evaluated separately merely by observing a history of

system failures and some knowledge of how the system behaves (periodic mean and autocorrelation

function). A linear relationship between software failure rate and software utilization has given

somewhat contradictory results, suggesting that perhaps more complex relationships need to be

considered. In any case. it has been shown how establishing the relationships between software

failure rate, hardware failure rate, and kernel utilization, it is in principle possible to evaluate the

contribution of software and hardware to the unreliability of the total system.

Perhaps one of the more important results is that the probability density function for the simplified

cyclostationary model (having a single exponential in its hazard function) has a known Laplace

transform, making it suitable for Markov modelling. Neither the complete Cyclostationary, nor the

Weibull, nor the Periodic models lead to probability density functions with known Laplace transforms.

From a user viewpoint, there is a reinforcement effect between workload and lack of reliability.

Higher workload implies that the Kernel of the operating system has to take more decisions per unit

time, increasing the probability of a system failure. Hence, not only the user receives less CPU cycles

per unit time, but the probability that these cycles will become useless because the job will have to be

restarted also increases.

Hence, high reliability seems to be in contradiction with other performance measures (such as the

maximum number of jobs allowed to be simultaneoulsy active).

But the contradiction between reliability and other performance measures seems to be of a deeper

nature. In [Spirn 77] several paging algorithms are described and modelled. Page faulting in a virtual

memory system can be described as a stochastic process, and a usual optimality criteria for paging

algorithms is how well they are able to perdict future system behavior given past and present system

behavior. This is exactly the information given by the autocorrelation function, and in [Spirn 771

several paging algorithms are compared in terms of how well their predictions fit the autocorrelation

function of a real page faulting process. But in Section 4.2. it has been shown that a way of improving

reliability is to have white noise as the resource utilization process. For white noise, the future values

.. . . -. ---
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of the process are completelly unpredictable no matter for how long has the system been observed
and no matter how close in the future is the prediction desired. Hence, for an optimally reliable paging
system, its utilization process should be white noise. Since future system behavior would be
unpredictable, an optimum paging algorithm under these conditions would just swap out of memory
pages at random, therefore lowering system performance.
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5. Proposed research

5.1 On the linear dependency between overhead and failure
rate

The first topic to be investigated in depth would be the real dependency between overhead and

failure rate. A linear relationship has been assumed for the cyclostationary model, and any other

relationship may lead to hopelessly complex mathematical problems in the evaluation of the

expectation of the modified Gaussian process. However, there is always a possibility that other

dependencies may be more accurate, and even if exact expressions for the distribution of the time to

failure cannot be obtained for dependencies other than linear, errors due to a linear relationship

assumption should be understood.

Since a failure cannot be detected if the system is not used, the only a priori assumption that seems

reasonable is that the failure rate must be a non-decreasing function of the system overhead. What

needs to be known is for what ranges a linear dependency is accurate, what are the confidence

intervals that can be obtained, and to explore the possibility of characterizing the failure rate with

relationships other than linear if necessary.

5.2 Generalization to systems showing a non-cyclostationary
behavior

One of the fundamental assumptions made to develop the cyclostationary model has been that the

system overhead could be approximated by adding a periodic function to a modified Gausian 4-

process. This may be a good approximation for time-sharing systems, but it certainly does not apply to
many real-time and command and control systems. In fact, the highest demand for high availability

systems comes from special purpose command and control systems like the ones to be installed in

aircrafts, missiles, satelites, and so on. For some of these systems, the workload can be modelled by a

sequence of load states. If the exact sequence is not known in advance but the possible alternatives

are known, the instantaneous value of the mean workload could be modeled by a semi-markov

process [Howard 71].

The cyclostationary model would then evolve to a model in which the instantaneous mean failure

rate is not a periodic function of time, but a random variable whose statistics depend on the mission to

accomplish. This new model would have, in addition, the ability to incorporate the effect of permanent

hardware failures, transient hardware failures, and software failures. In fact, most performance-

le
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reliability models presented to date just assume that in the presence of a permanent hardware failure
the system reconfigures itself and continues to operate with a possibly different computational
capacity. Whether the capacity diminishes or the workload increases, the result will be a system
operating in one of a set of possible states for a given period of time.

5.3 Characterizing total system performance

Present reliability evaluation tools, such as Reliability or Availability, are felt to be innadaquate due
to the large gap that separates say, the Availability of a computing facility and the cost that has to be
paid due to of lack of reliability. Digital computers are used to store and process information, and the
sooner the desired information is available, the better the system. The occurrance of a system failure
means waiting until operation is restored, bringing the machine to a consistent state, possibly
restarting computations that were interrupted because of the failure and (if possible) updating the
system with the information it was supposed to process while it was not operational. In short, it means
a delay in obtaining the desired information and an added cost associated with the extra
computations related to restoring the system to the desired state after the failure occurred.

From a single user viewpoint, a failure also means a delay. In [Castillo 801 the expected ellapsed
time required to complete a program was computed under rather restrictive assumptions, but
separating the "useful" time that leads to program completion from the "useless" time due to lack of
reliability. Hence, a possible extension of the methodology presented in this report would be to try to
caracterize the cost associated with lack of reliability from the resource utilization functions of each
system resource.

5.4 System design optimization criteria derived from this
model

Finally, it has been described in Section 4 how reliability seems to be in contradiction with other
performance indicators. If it is assumed that the performance of a digital computer can be
characterized by a vector, each component measuring a different aspect of performance (for
example, throughput, execution rate, reliability, storage capacity, etc.) the arguments exposed in
Section 4 seem to indicate that it is not possible to raise the value of all these components at the same
time (except by enforcement of fault-intolerance in each resource). Hence, it seems in principle
possible to look for the optimum performance point, as the point in which the system operates in a
state in which a cost function associated with each performance measure is minimum.
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I. The cyclostationary Poisson process

The problem is to obtain an expression for the pdf of the time to failure of a doubly stochastic failure

process

.t

p(t) = E {,\(t)e 0 (.1)

where the time origin is assumed to be t =0 and

X(t) = a u(t) + b

- am(t) + b + az(t)- al(t) (1.2)

m(t) being a periodic function of time, z(t) a stationary Gaussian process independent of m(t), and

f Z(t) 'f z(t)<um nL0 odlrws

(1.3)

Define

A(t) = J (,) d7 (1.4)
0

It is shown in [Saleh 74] that since

A(t) - A(t) (1.5)

(1.1) can be rewritten as
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-- .),A(t)

p(t)at 1.6)

-)A(t)

Define

t
M(t) = m(t) dt (1.8)

0

£t

Z(t) = J z(t) dt (1.9)
0

-(t) = (r) dr (1.10)
0

The problem reduces to evaluating the expectation

E ete mt - Z(t) - aZ(t) + b] 

(

or, since m(t) and z(t) are independent, the problem is equivalent to evaluate

Ee E,, ( {. [a,, .-,] a,.,,

1.1 The deterministic part

Let us examine now the first expectation. m(t) is a periodic function of time. However, the time
origin is, in principle, unknown. The probability density function (pdf) given here is going to be
compared with the estimated pdf of a real system. In an observed pdf, each system failure will be
associated with a time origin corresponding to the moment at which the system was started. However,
if the failure rate is a time-dependent function, it cannot be assumed that the system will be started

r - --- -..-.- -
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with equal probability at any time during a one day period. In fact, the system will be started more

often in the periods of time in which it fails more. Since m(t) is precisely the periodic component of the

failure rate,

E ~ J me(u)e du
0

whehe mo(t) is m(t) after normalizing to have area one in a one day period,

mO(t) = W (1.14)

JTm(r) d'r

and T is the period of m(t).

To evaluate the expectation in (1.13), m(t) will be approximated by a finite Fourier series expansion.

m(t) = 'T + N C sin(nwt + qPn) (1.15)

where the following constants have been used
= .Z2 . 1.16)

12L
T

T= - m(t) dt (1.17)

2 2 1/2cn= (a; . =  (.18)

arctan 2(1
fn bn

a . m(t) cos(nt ) dt (1.20)T1"

T
b, -L f m(t) sin(nwt ) dt (1.21)

0
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Taking into account this approximation, we can obtain another representation for M(t). First, note

that

,"+tN

J-m(v)dv a a t + E cos(nor + qF,) - cos(nw(,r + t) + T,)] (1.22)

1 n

= aM t + ga(t,T) 
(1.23)

where g,(t,-r) is defined as

g,(ti') " 1 -E cos(nw'. + n) 9)cos(nw(r + t)+ qp) ] (1.24)

E eat) + bt can now be written as

E (aM(t) + bt -(aof + b)t f Tm°(")e'g 1')Et e }) a• 0 T~ di' (1.25)

Oate.(aA + b)t (.26)

where

Ma(t) d (1.27)

0

is also a periodic function of t.

1.2 The stochastic part

The problem is now to compute

E e [(t)' 1 
(1.28)
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Since z(t) is a zero mean Gaussian process, aZ(t) will be another zero mean Gaussian process with

variance (see [Papoulis 65], pp. 323-325)

a 2(t) - 2a2f RZZ(tj 2 dtldt 2  (1.29)
00

where RU(t 1 ,t2) is the autocorrelation function of the process z(t). If in addition z(t) is stationary,

ar2(t) = 2a2 ( Rfz(- ) dr (1.30)

0 0

The main problem in the evaluation of (1.28) is the evaluation of the statistics of the process f(t) after

integration, that is, the statistics of the excess area of a Gaussian process above a given level c in [O,t]

(see Figures I-1 and 1-2). The problem of level crossing for Gaussian processes has been extensively

treated in the literature. In particular, in [Stratonovich 67] this problem is studied in detail, and

expressions are given for the duration of peaks above a given level, and the excess area under such

peaks. This is exactly what is required. The following is a summary of Chapter 1-3, Vol II, of

[Stratonovich 67]. The derivation will only be outlined here with remarks on the assumptions used

and the results obtained.

z(t)

Vt

C ------ -- -- -- - -

Figure I-1: A possible realization of z(,r)-.(r)

I L[U . ... .--.. .. .
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t

Figure 1-2: A realization of .().lhe shadowed area corresponds
to the integral of .(r) from 0 to t, Z(t).

Z(t) is a random variable whose exact statistics may be impossible to compute. Its value for a given
realization of the process z(t) is equal to the addition of the excess areas of all peaks of z(t) above a

level c. It is shown in [Stratonovich 67], p. 59, that if the duration of the peaks is much smaller than the
time between peaks, the time between upcrossings (downcrossings) can be approximated by an

exponentially distributed random variable. The probability of having k peaks in [O,t] is then given by

P(n = k) = e t  (1.31)

where q is the mean number of peaks per unit time. In the case of a stationary Gaussian process, 71 is
given by ( [Stratonovich 671, p. 7)

(R_)1/2

2 e 2 0 2 (1.32)

where

a2R()
2"() (1.33)
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These expressions are valid only for "smooth" processes. Qualitatively, the smoothness condition

means the z(t) must be differentiable and close to a straight line segment during a sufficiently small

time interval. In the case of Gaussian processes, this condition means that RZZ(T-) must have a finite

second derivative at the origin. Assuming that this condition is satisfied, it is required now to

characterize the excess area under each peak.

If the duration of peaks is small and the process is smooth, the second derivative of z(t) can be

considered constant over the duration of a peak, the peak can be assumed to be of parabolic shape,

and the excess area depends only on the value of the first derivative of z(t) at the time of crossing the

level c. Under these assumptions, the following expression can be obtained for the probability density

function of the area under a peak ( [Stratonovich 67], Vol II, pp. 68-72)

= L 2 1/221/3eL[ 3 C2 (R2)1/2 S ]2/3

p(s) = 3 2  (R 2 e 2 2a3 (1.34)

The value of i(t) is given by

t = S + ...... + Sk  (1.35)

where each of the si has density given in (1.34) and k is another random variable with density given in

(1.31). An exact evaluation of (1.28) would require knowledge of the joint probability density function of

Z(t) and Z(t). Since this impossible to obtain, the approximation will be made that

7-(t) = k E[s] (1.36)

where k is the number of peaks in [O,t] and E[s] is the mean peak area. In this case, Z(t) and Z(t) are

independent random variables and

E I e[(<) - = E e a(0) E f ea ](t) (1.37)

Since Z(t) is a zero mean Gaussian variable with variance a2(t) given in (1.31),

* ~ ~ --o
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-aZ( 00aZ(Q ..
E{I e aZ2t) } = ... 4.. e 2a 2(t) dZ(t) (1.38)21/2o(t) 10

226

=e 2 (1,39)

and

E{ e 0 } = O P(n =k)e (1.40)

-/(eaE[s]l)t

e (1.41)

p(alc)t = e (1.42)

where p(a,c) is the correction factor

aEj
p(a,c) = 1q(e -1) (1.43)

Note that both - and E[s] depend on the value of the level c. The value of Els] can be computed from

(1.34).

E[s] L.l21 ... (1.44)

2 1/2

2 1/2

If aE[s]<<<l (that is, if the value of c is much larger than the variance a2), the approximation can be

made that

." 
"  

. ...... .............."1
- - - _ , ,,
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e &1 1 + aE[s] (1.46)

Substituting now (1.46) in (1.43)

p(a,c) = aqjE[s] (1.47)

Substituting now (1.32) and (1.45) into (1.47) a simpler expression is obtained for p(a,c)

p(a,c) 2 e . (1.48)

where or2 is the variance of z(t), and c is the level below which z(t)-.(t) must vanish.

1.3 Example

If z(t) is a zero mean Gaussian process with variance v 2 and autocorrelation function

Rzz(t). = a2e 3Pt l  (1.49)

the expectation in (1.40) cannot be evaluated beacuse the second derivative of (1.49) at the origin does
not exist. However, (1.49) can be approximated by the following equation

R' (t) - 02_[e-ot.T "I"/,"€

= 2 - ,.peeJ (1.50)

provided that -rc,<<<1. In this case, the variance if the integrated process becomes, according to
(1.30)

- - --------.
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ft
o'2(t) = 2C,2 (t-)e dr

0

- 242t a21 'i (1.51)

and the expectation (1.11) becomes

.[afn + b -p(a,c) - a2_! -  a- , "_a t

Oa(t) e 2- (1.52)

and p(a,c) is given in equation (1.48). The fact that the term (R2)1 2 cancels in the approximated value

of the correction factor p(a,c) has an interesting physical meaning. R'zz(t) is the autocorrelation
function of the Gaussian process that would be obtained at the output of a low-pass filter with
bandiwth 1/,. c when its input is the process z(t). The fact that the value of p(a,c) is independent of R2

means that the area generated under the peaks of z(t) per unit time is independent of the bandwith of
this filter. The area generated per peak diminishes for higher bandwith, while the number of peaks per
unit time increases with the bandwith. Fortunately, these to effects cancel each other, such that the
area generated under the peaks per unit time remains a constant, independent of the process
bandwith.

Im-,~ _
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II. Parameter Estimation

As it has been described in Section 2.5., the problem that has to be repeatedly solved in this report

is that of finding the minimum of a function of the form

I(x) u L'.,i 1 H(tffts.,x) - ln[h(ffix)] (11.1)

subject to the constraints

h(ffi,x )>O i = 1 ....... n (12

where n failures of a resource have been observed at times tfi, after observing the system since ts,.

Take, for instance, the case of the distribution obtained from the simplified cyclostationary model

presented in Section 4.1..

p(t) = L a-y([1- e je (.3)

Given a history of n failures represented by a set of pairs [tsitfi] i = 1 ....... n the maximum likelihood

values of a,,,8 are these values that maximize the function

P(n)(ft l...tf n'~ ) H = x ",I e ' ( t ' s ) n e "a 'y )(tft S' ) - [1- e " ( i ' ]

p sis ....ts1 . ,ts = a-y(eP - (e'.4)

or, equivalently, they are the values wich minimize the function

l(a,,y,) = (a-y)(tfi-tsi) + 1 -Y , . (f'ts'. In [a - [ " e'(tf s)]

(s.5)

subject to the constraints

I
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1) a>O

2) #?:O

3) y>O

4) a-y>O (11.6)

Although this is a typical nonlinear programming problem for which general methods are available
(see, for example, [Bazaraa 791), the problem of minimizaing functions like (11.5) present two
peculiarities. First, every time that the function has to be evaluated it requires to compute the sum of n
terms, n being the number of observed failures. In the case of the file system described in section 3.1.,
the number of observed failures in five days of system operation is 877. Hence, function evaluation
(or gradient evaluation) is computationally expensive and an efficient method will be needed.

Second, although several efficient methods are known for minimization subject to nonlinear
inequality constriants, these methods usually assume that the constraints are external to the
mathematical statement of the problem, and that the objective function can in fact be evaluated
outside the constraints. This is not the present case. The fourth constraint in (11.6) must be satisfied
plainly because the objective function (11.5) does not exist unless its parameters satisfy this constraint
(in the sense that the logarithm of a negative number does not exist). Indeed, the fourth constraint
says that the hazard function must be positive, and a solution that does not satisfy the fourth
constraint in (11.6) invalidates the existence of the objective function itself. Hence, minimization
algorithms that require the evaluation of the objective function outside the constraints cannot be
used.

For this reason, the first algorithm to be used to find a minimum of functions of the type (11.5) was
the gradient projection method of Rosen [Rosen 60]. This algorithm. follows a steepest descent
direction until one or. several constraints are violated, projecting then the gradient on the subspace
defined by the active constraints. This method has proven to be very slow with the functions tested in
this report. After some experimentation, the fastest algorithm found has been a slightly modified
version of a variable metric algorithm proposed by Powell (Powell 781. The original Powell algorithm
occasionally requires the evaluation of the objective function outside the constraints and has been
modified such that the maximum step size at each iteration never leads to a point outside the
constraints. The modified algorithm converges more slowly that the original Powell algorithm, but for
all the cases in this report, the minimum has been found in less than 30 iterations, which is a very
good rate of convergence given the functions under consideration.

The algorithm has been implemented as an APL package that requires the definition of the
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objective function, the gradient of the objective function, the constraints and the gradients of the
constraints. The following sections desfcribe each function in detail, providing a notational dictionary
consistent with the programs used.
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11.1 File System Failures (Cyclostationary Model)

Function to be minimized

1(Sdk'c dk) = I Sd[M(tfi)-M(tS1)l + E [Cdk - P(Sdk,bn) Sd * .4zi I of .-ts,)

in I1 Sdk2 8 .e(f~s)

p2

- I n[SdkMetf ) + Cdk -P(Sdklbmin)

2 2 1 [ - * 1(ff1-) 2 *!I P2(ff1 i) 1]
~Sdk [e ]Sdkfi1

where

Sd(1 1)3/2 r1/2 bi *2

Pdk(Sdbamn i2 ) 2(a 1 + a

E n

K I M(ttj)-M(ts1) K 1 = I ,,I KI

K2  tf1-ts1  K En1  K

-23 .1- .e'P1(2i] K4 In LIm K~

K4  41Ie~KI

K5 =m(tf1) 32 12 bri 2

8 (a + a2) e(v/2)2
Ke 2 e2(almm
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x = Sdk

X 2  C Cdk

Objective Function

I(X) = XlK 1 + [x 2 -x 1 K-x1[j-1 +-1a] ] K2 + + 2 ]

. ; 1 In [xi, + x -xK 6 - x 2[K + K]

Gradient

aL = K1-K + K2 + 2XI1 - -[-]
axl II K2-2xE

n 5i -K 6x "I [K 3 K .1
x K + x I x K(,.K 4KX2

a1 2 x1 5  x2 .x1K.[K3 +K"1x

Constraints

C1(x ) = x 1 >0

C = x2 >0

C31 ) a xlmin{Ks) + x- x K6 - x2[max{K31 + K4)]> 0

Gradient of the constraints

I,
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ax a
a_ . 1 a_ . 0

ax ax2

aX1  ax2
L

ac3  
ac3

ax1 _ min{K5 . 2x1 max{K3 + K4  ax2  0
ax 1 3 . •a
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11.2 System Failures (Cyclostationary Model)

Function to be minimized

I~s~,s~chW En. I S,.YjM(t9._Mts)

+~ sw Shwlpch,..kdp~s.k In 081

+ En S22 ffw)

I I n[s8.mtw - +syk - p(sw~ko) 41 ptfi,,k0)

+ y En 15 _L2iiI) 1- 48

+ Ene-L. iJ2ut

4~ ~2

Kn[ -. nit +my ~t11)) psw~

1 S02

whe_
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X2  Shw

X3 uChw

X4 = k0

K6 as defined in Section 11.1.

X
4

Objective Function

I(x) = (x1 +x 2)K1 + [x 3 -(x I + x2K 6 . x I K7 - (x l + X2) 2 [  IlK2

+ (x1 + x2 )2[ +K 4#1 #2 ]

En In [ (x, + x2)Kr + -(x, + x,)K, - x,-(x, + x) 2[K + K,]]

Gradient

3 - 1K6 K2- KK2(xX)- + ] K2 + 2(x+x) - K4

ax i KKl P + 2)P 1  P2

(Xl XKsi .K6 K7 2x , [K 7 + K4 ]

KKK2(x, +x)- " + ]K 2(X+X)" +"

KI 
+ K 41

]

(x 1+ x2lKs + x3 -(x1+x2)K XlK7 "K3 + K4 (xl +x2) 2



PARAMETER ESTIMATION 
75

K2x3  1 (x1 +Y '+ x3 (x1 +x2)K6 "1[K 3 +K+](X1 4x2
)

1~~ ~ ~ 513 j4(i 2

-XjK X4~ + En x1K 1 (2/x 4) + (x4 1(a 1 + U 2))2a xK71-L +  x,]+ =, 2

4  1 X4  a + 2  (xI + x2)K + x3 (xI + x2)K6 -XK 7 " -K3 +K4 IN +X 2)

Constraints

cj(Z) - x= >0

Cx2( ) = x2 > 0

C3( ) = x3 > 0

C x 4 >c ( ) = X4 > o

C = (x1 + x2)min{K, } + x2 - (x, + x2)K - xK7 - (x1 + x2)2[max{K3 + K4 )] > 0

Gradient of the constraints

ac-ax1  - i i4 ..

axi

ac5
=-min{K5 }-KeK72x maxK 3 +K4ax2

a25 = mein{Ks} Ka. -7 2x max{K3 + K4 }

ac5 1
BC5 = i{K6, -K-2X4
ax2  7•- + { + Kai
ax3

4 14

li,

k
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11.3 Cyclostationary model - Direct Method

Function to be minimized

= (,a-0T ' 2)(tfi-tSi)

+ E n ,- 1-e (tfi'ts) + a " 2 (tfi" ]

- 14,IV a-e [1 e8 ef's] - ;11" e'8 (f ' , 1 1

Definitions

X = a x2  o1  X3 = #1 X4 = 0 2  X5 - P 2

K2i and K2 as in section 11.1.

Objective Function

(x -x x)K + *.K,(i-, = 2x. x) X. , -e*,, ]+- ;:[,-e xI,]

2X 5 --X.

J~~~~n ~ ~x exK 2i]-x eXKi

,Z=,lx1 - x 2 11 - ix411-eS~]

Gradient

= K 2  -
n 1

.x 2 11 e 3K2jix
4 11 -exsK2i]

E= K2 ,i1 .ex 3K2  57n "'x3K2

ax2 2 x3 xI x211 -e ' 1x3 K2i], x 5K2i]
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K e-x3. K 2 i- n 9x3K2,
ax3  x3  2 1

x x3 K2

7 n x= 2 K2i e' 3

x1 - x211 - e x3K2i], x4l1 - a 1K1i

Constraints

C1 ) X 1 > 0
2M = X >0

C3( ) = x3 > 0

Gradient of te constraints

ac1  as 0
xi= 1 -j = 0=0ax I  ax2  ax3

ac ac1- -- _1 =C 0
axi ax2  ax3

.aC3 0  0 =1axi x x
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11.4 Simplified Cyclostationary Model

Function to be minimized

P(a,/f) = 'E.,(a-y)(tf1 -ts1)+ e-- n- In [a " -y[ie ]

Definitions

X,=Q x 2  7 x3 =

K2 i and K2 as in section 11.1.

Objective Function

I( )= (x1-x2 )K2 + 1 - ex3K2 i- n=n In[xl - x 2 1 - e'X3K2,]

x3

Gradient

-- = K 2 . 1
axx 1 2 x2(11 e2X1 K i-

-= - K - n [1 -e'X 3 K2 i] + n I-*x 3 K2 1

x 1 - x211 -a 3 i
-x3K2

L x 2 K= 1 e x 3 K 2 x n 3 K 2  5 " x 2 K 2 i

ax3  x3  2 i-2 1 -e i] + x -x3 K2
i

x3  xl. X2L11

Constraints

C(4) XI >0

C2( ) x1 -x2 > 0

C3(i) x3 >0
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Gradient of the constraints

ac 1 1  -
ax1  as2 .6

ac a ac ac~
c2 0 ax2 0_0

aia2 13  ax ~aX 3

II

,- t

I:.



80 WORKLOAD, PERFORMANCE, AND RELIABILITY OF DIGITAL COMPUTING SYSTEMS

11.5 Periodic Failure Rate

Function to be minimized

1(spCp) = I sp(M(tfi)-M(tsi)] + 1 Cp(ti tsi) ="n [sm(ti) + pI

Definitions

x =8

x 2 = p

K19 K2, and K5i as defined in Section 11.1

Objective Function

1(f)= xIK1 + X2 K2" ,-"j=1 1nEXlK 51 + x 21

Gradient

= K,.-= K5
i

Jn

2x In1 XlKs i + x 2

&1 2

' = K2" 1 XlK=

Constraints

C()=x 1 min{K5 ) + X2>0
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Gradient Of the Constrainlts

22L n~(K,.) C

axi.

FY4
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III. Autocorrelation function estimation

Given an ergodic and stationary process z(t), the problem is to estimate the function

T
R TtO 21 aT z(t +'r)z(t) dt(1.)

For a finite record of observed values z(n), the autocorrelation function is usually estimated using the

expression

'WNn

R, (n) = 1 = 1 z(i + n)zi) (111.2)
N '

This estimate is intuitive except for the factor 1/n. Since N-n terms are summed, it seems that 1/(N-n)

would be more exact. In fact (111.2) is a biased estimator of the real autocorrelation function. However,

its expected error is smaller than the expected error that would be obtained using the (unbiased)

estimator with factor 1 /(N-n) [Jenkins 68].

In the cases presented in this report the values of z(n) are not directly observable. In the case of

sampling the values of fraction of time in Kernel mode, what was measured was the average fraction

of time in Kernel mode during the last second, recording a sample every five minutes. In the case of

the number of blocks accessed to the file system, the available samples are the number of blocks

accessed during the last five minutes, also with a resolution of five minutes. The measured values are

not the values of z(n), but the values of the process

9 t
z'(n) = z(t) dt (111.3)

where A equals five minutes or one second, and the available samples of z'(n) are five minutes

appart.

It has been observed that in the two cases studied in this report, the autocorrelation function

suggests an approximation of the form

Rzz(t) = ale +i 2l (111.4)

The problem is then to estimate the values of the a,, 0 from the observed values of z'(n). If
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RzIZ(t= a'Ie "-11 + a' 2e 'P 2 (111.5)

it is easy to show that

Rzz(t) = ale 'P,14 + a2e q  (111.)

where

ai 2a1  (111.7)Oi=2(COSh(i, ) - 11

The problem is then to estimate the values of the a',, ,l i using (111.2) and the observed values of z'(n),
and yse (111.7) to obtain the values of a of the autocorrelation function of z(t).

Unfortunately it has not been possible to follow this procedure. The accuracy of the estimated
autocorrelation function is limited basicly by two factors : the sampling frequency and the length of
the available record, N. Although many techniques exist for power spectrum estimation that take into
account these two factors [Oppenheim 751 (the power spectrum is the Fourier transform of the
autocorrelation function), no techniques are available for correcting the estimates of the
autocorrelation function itself.

If the sampling frequency is comparable to the bandwith of the power spectrum, the power

spectrum estimate may be poor due to aliasing. Under these conditions, the estimate of the
autocorrelation function given by (111.2) may take negative values. This is precissely what happens for
the estimated autocorrelation function of the file system utilization process as shown in Figure 3-2.
For a sampling frequency equal to one, the bandwith of the process would be equal to #I =0.59, that

is, the sampling frequency is not even twice the process bandwith.

The solution adopted has been to estimate the a, and P3i directly from a history of failures as
described in Section 4.1., and to estimate the variance of the process a2 . Since

2 al +a 2  (111.8)

and
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a
S 2..J 

(119

And knowing vi Pi and a 2 the values of the a, can be computed.

zzI

As
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